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Background on VARs

Introduced by Christopher Sims (1980) in a path-breaking article titled
“Macroeconomics and Reality.”

Sims was indeed telling the macro profession to “get real.”

He criticized the widespread use of highly specified macro-models that made
very strong identifying restrictions (in the sense that each equation in the
model usually excluded most of the model’s other variables from the
right-hand-side) as well as very strong assumptions about the dynamic
nature of these relationships.

VARs were an alternative that allowed one to model macroeconomic data
accurately, without having to impose lots of incredible restrictions: “macro
modelling without pretending to have too much a priori theory.”

We will see that VARs are not theory free. But they do make the role of
theoretical identifying assumptions far clearer than was the case for the
types of models Sims was criticizing.
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Matrix Formulation of VARs

The simplest possible VAR features two variables and one lag:

y1t = a11y1,t−1 + a12y2,t−1 + e1t

y2t = a21y1,t−1 + a22y2,t−1 + e2t

The most compact way to express a VAR system like this is to use matrices.
Defining the matrices

Yt =

(
y1t

y2t

)
A =

(
a11 a12

a21 a22

)
et =

(
e1t

e2t

)
This system can be written as

Yt = AYt−1 + et
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Vector Moving Average (VMA) Representation

VARs express variables as function of what happened yesterday and today’s
shocks.

But what happened yesterday depended on yesterday’s shocks and on what
happened the day before.

This VMA representation is obtained as follows

Yt = et + AYt−1

= et + A (et−1 + AYt−2)

= et + Aet−1 + A2 (et−2 + AYt−3)

= et + Aet−1 + A2et−2 + A3et−3 + ...... + Ate0

This makes clear how today’s values for the series are the cumulation of the
effects of all the shocks from the past.

It is also useful for deriving predictions about the properties of VARs.
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Impulse Response Functions

Suppose there is an initial shock defined as

e0 =

(
1
0

)
and then all error terms are zero afterwards, i.e. et = 0 for t > 0.

Recall VMA representation

Yt = et + Aet−1 + A2et−2 + A3et−3 + ...... + Ate0

This tells us that the response after n periods is An

(
1
0

)
So IRFs for VARs are directly analagous to the IRFs for AR(1) models that
we looked at last week.
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Using a VAR to Forecast

VARs are often used for forecasting.

Supppose we observe our vector of variables Yt . What’s our forecast for
Yt+1?

The model for next period is

Yt+1 = AYt + et+1

Because Etet+1 = 0, an unbiased forecast at time t is AYt . In other words,
EtYt+1 = AYt .

The same reasoning tells us that A2Yt is an unbiased forecast of Yt+2 and
A3Yt is an unbiased forecast of Yt+3 and so on.

So once we’ve estimated a VAR of this form, they are very easy to construct
forecasts from.
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Generality of the First-Order Matrix Formulation: I

The model we’ve been looking at may seem like a small subset of all
possible VARs because it doesn’t have a constant term and only has lagged
values from one period ago.

However, one can add a third variable here which takes the constant value 1
each period. The equation for the constant term will just state that it equals
its own lagged values. So this formulation actually incorporates models with
constant terms.

We would also expect most equations in a VAR to have more than one lag.
Surely this makes things much more complicated?

Not really. It turns out, the first-order matrix formulation can represent
VARs with longer lags.

Consider the two-lag system

y1t = a11y1,t−1 + a12y1,t−2 + a13y2,t−1 + a14y2,t−2 + e1t

y2t = a21y1,t−1 + a22y1,t−2 + a23y2,t−1 + a24y2,t−2 + e2t
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Generality of the First-Order Matrix Formulation: II

Now define the vector

Zt =


y1t

y1,t−1

y2t

y2,t−1


This system can be represented in matrix form as

Zt = AZt−1 + et

where

A =


a11 a12 a13 a14

1 0 0 0
a21 a22 a23 a24

0 0 1 0

 et =


e1t

0
e2t

0


This is sometimes called the “companion form” matrix formulation.
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Interpreting Shocks and Impulse Responses

The system we’ve been looking at is usually called a reduced-form VAR
model.

It is a purely econometric model, without any theoretical element.

How should we interpret it? One interpretation is that e1t is a shock that
affects only y1t on impact and e2t is a shock that affects only y2t on impact.

For instance, one can use the IRFs generated from an inflation-output VAR
to calculate the dynamic effects of “a shock to inflation” and “a shock to
output”.

But other interpretations are available.

For instance, one might imagine that the true shocks generating inflation
and output are an “aggregate supply” shock and an “aggregate demand”
shock and that both of these shocks have a direct effect on both inflation
and output.

How would we identify these “structural” shocks and their impulse
responses?
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The Multiplicity of Shocks and IRFs

Suppose reduced-form and structural shocks are related by

e1t = c11ε1t + c12ε2t

e2t = c21ε1t + c22ε2t

Can write this in matrix form as

et = Cεt

These two VMA representations describe the data equally well:

Yt = et + Aet−1 + A2et−2 + A3et−3 + ...... + Ate0

= Cεt + ACεt−1 + A2Cεt−2 + A3Cεt−3 + ...... + AtCε0

Can interpret the model as one with shocks et and IRFs given by An.

Or as a model with structural shocks εt and IRFs are given by AnC .

And we could do this for any C : We just don’t know the structural shocks.
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Contemporaneous Interactions: I

Another way to see how reduced-form shocks can be different from
structural shocks is if there are contemporaneous interactions between
variables, which is likely.

Consider the following model:

y1t = a12y2t + b11y1,t−1 + b12y2,t−1 + ε1t

y2t = a21y1t + b21y1,t−1 + b22y2,t−1 + ε2t

Can be written in matrix form as

AYt = BYt−1 + εt

where

A =

(
1 −a12

−a21 1

)
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Contemporaneous Interactions: II

Now if we estimate the “reduced-form” VAR model

Yt = DYt−1 + et

Then the reduced-form shocks and coefficients are

D = A−1B

et = A−1εt

Again, the following two decompositions both describe the data equally well

Yt = et + Det−1 + D2et−2 + D3et−3 + ......

= A−1εt + DA−1εt−1 + D2A−1εt−2 + ...... + DtA−1ε0

For the structural model, the impulse responses to the structural shocks
from n periods are given by DnA−1.
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Structural VARs: A General Formulation

In its general formulation, the structural VAR is

AYt = BYt−1 + Cεt

The model is fully described by the following parameters:

1 n2 parameters in A
2 n2 parameters in B
3 n2 parameters in C
4

n(n+1)
2 parameters in Σ, which describes the pattern of variances in

covariances underlying the shock terms.

Adding all these together, we see that the most general form of the

structural VAR is a model with 3n2 + n(n+1)
2 parameters.

Karl Whelan (UCD) Vector Autoregressions January 27, 2011 13 / 29



Identification of Structural VARs: The General Problem

Estimating the reduced-form VAR

Yt = DYt−1 + et

gives us information on n2 + n(n+1)
2 parameters: The coefficients in D and

the estimated covariance matrix of the reduced-form errors.

To obtain information about structural shocks, we thus need to impose 2n2

a priori theoretical restrictions on our structural VAR.

This will leave us with n2 + n(n+1)
2 known reduced-form parameters and

n2 + n(n+1)
2 structural parameters that we want to know.

This can be expressed as n2 + n(n+1)
2 equations in n2 + n(n+1)

2 unknowns, so
we can get a unique solution.

Example: Asserting that the reduced-form VAR is the structural model is the
same as imposing the 2n2 a priori restrictions that A = C = I .
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Recursive SVARs

SVARs often identify their shocks as coming from distinct independent
sources.

For instance, a pure “aggregate supply” or “technology” shock is usually
seen as being completely independent from an “aggregate demand” or
“preference” shock.

But the error series in reduced-form VARs are usually correlated with each
other. One way to view these correlations is that the reduced-form errors are
combinations of a set of statistically independent structural errors.

The most popular SVAR method is the recursive identification method. This
method (used in the original Sims paper) uses simple regression techniques
to construct a set of uncorrelated structural shocks directly from the
reduced-form shocks.

This method sets A = I and constructs a C matrix so that the structural
shocks will be uncorrelated.
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The Cholesky Decomposition

Start with a reduced-form VAR with three variables and errors e1t , e2t , e3t .

Take one of the variables and assert that this is the first structural shock,
ε1t = e1t .

Then run the following two OLS regressions involving the reduced-form
shocks

e2t = c21e1t + ε2t

e3t = c31e1t + c32e2t + ε3t

This gives us a matrix equation Get = εt .

Inverting G gives us C so that et = Cεt . Identification done.

Remember that error terms in OLS equations are uncorrelated with the
right-hand-side variables in the regressions.

Note now that, by construction, the εt shocks constructed in this way are
uncorrelated with each other.
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Interpreting the Cholesky Decomposition

The method posits a sort of “causal chain” of shocks.

The first shock affects all of the variables at time t. The second only affects
two of them at time t, and the last shock only affects the last variable at
time t.

The reasoning usually relies on arguments such as “certain variables are
sticky and don’t respond immediately to some shocks.” We will discuss
examples next week.

A serious drawback: The causal ordering is not unique. Any one of the
VARs variables can be listed first, and any one can be listed last.

This means there are n! = (1)(2)(3)....(n) possible recursive orderings.

Which one you like will depend on your own prior thinking about causation.
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Another Way to Do Recursive VARs

The idea of certain shocks having effects on only some variables at time t
can be re-stated as some variables only having effects on some variables at
time t.

In our 3 equation example this method sets C = I and directly estimates the
A and B matrices using OLS:

y1t = b11y1,t−1 + b12y2,t−1 + b13y3,t−1 + ε1t

y2t = b21y1,t−1 + b22y2,t−1 + b23y3,t−1 − a21y1t + ε2t

y3t = b31y1,t−1 + b32y2,t−1 + b33y3,t−1 − a31y1t − a32y2t + ε3t

See how the first shock affects all the variables while the last shock only
affects the last variable.

This method delivers shocks and impulse responses that are identical to the
Cholesky decomposition.

Shows that different combinations of A,B and C can deliver the same
structural model.
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Two Examples of VAR Studies

We will look at two examples of studies that use recursive VARs:

1 Lutz Killian (2009): Not All Oil Price Shocks are Alike: Disentangling
Demand and Supply Shocks in the Crude Oil Market. American Economic
Review, 99(3), June.

2 James Stock and Mark Watson (2001), Vector Autoregressions, Journal of
Economic Perspectives. This paper examines the effect of monetary policy
shocks.
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Killian on Oil Shocks

Oil shocks—large run-ups and subsequent declines in the price of
oil—regularly receive a lot of attention.

Many recent recessions were preceded by an increase in the price of oil. Why
exactly this has occurred is not obvious: Oil usage is actually a relatively
small input compared to GDP.

Previous empirical work has generally asked the question “what are the
effects of an oil price shock?”

Killian asks “what is an oil price shock and are there different kinds of oil
price shocks?”

He uses VAR analysis to distinguish between shocks to oil prices due to
global demand, shocks due to oil supply, and shocks due to speculation in
the oil price market.

Let’s see how he does it.
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The Model

Three variable monthly VAR in the growth rate of oil production, real global
economic activity, and the real price of oil: zt = (∆prodt , reat , rpot)

′.

VAR structure is

A0zt = α +
24∑
i=1

Aizt−i + εt

where εt are the structural shocks, and A0 is lower-rectangular

A0 =

 a 0 0
b c 0
d e f


Identifying assumptions:

1 Oil production does not respond within the month to world demand
and oil prices

2 World demand is affected within the month by oil production, but not
by oil prices.

3 Oil prices respond immediately to oil production and world demand.
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Interpreting the Structural Shocks

If A0 is lower-triangular, then so is A−1
0 .

Reduced-form model is

zt = A−1
0 α +

24∑
i=1

A−1
0 Aizt−i + A−1

0 εt

Reduced-form shocks et related to structural shocks as et = A−1
0 εt : e∆prod

t

erea
t

erpo
t

 =

 a11 0 0
a21 a22 0
a31 a32 a33

  ε∆prod
t

εrea
t

εrpo
t


The oil production reduced-form shock is a structural shock; the
reduced-form economic activity shock combines the structural oil shock and
the structural activity shock; the reduced-form oil price shock combines all
three structural shocks.
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Checking the Identification Restrictions

Relative to the general model

AYt = BYt−1 + Cεt

where are our 2n2 = 18 identifying restrictions?

1 We set C = I instead assuming contemporaneous interactions between
variables: 9 restrictions.

2 Lower-diagonal assumption on A0: 3 zero restrictions.

3 Unit coefficient normalization on diagonal of A0: 3 restrictions.

4 Orthogonal structural shocks: 3 off-diagonal elements of Σ are zero.
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Decomposing the Variables

In addition to the standard impulse response analysis, Killian shows how the
real price of oil can be decomposed into components related to these three
shocks. How did he do this?

Recall the VMA representation:

Yt = εt + Aεt−1 + A2εt−2 + A3εt−3 + ...... + Atε0

One can do this calculation three times, each time with only one type of
shock “turned on” and the other set to zero. Adding these up, one will get
the realized values of Yt .

Alternatively, one can do a dynamic simulation of the model

Yt = AYt−1 + εt

in each case letting the εt represent one of the realized historical shocks with
the others set to zero.
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Some of Killian’s Findings

1 Despite getting a lot of attention, shocks to oil supply have limited effects
on oil prices and have been of negligible importance in driving oil prices over
time.

2 Both global demand and speculative oil price shocks can have significant
effects on oil prices, but speculative oil price shocks have limited effects on
global economic activity.

3 Speculative oil-market shocks have accounted for most of the
month-to-month movements in oil prices.

4 But the steady increase in oil prices from 2000 onwards was almost solely
due to strong global demand.

5 Main Lesson: How the economy reacts to an “oil price shock” will depend
on the origins of that shock.

6 Helps to explain why the world economy survived the lastest big increase in
oil prices without going into recession.
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A Monetary Policy VAR

Stock and Watson’s 2001 JEP paper is a very useful introduction to VAR
methods.

The paper contains an important application: What are the effects of
monetary policy shocks?

Can think of these VARs as useful in two ways:

1 From a scientific perspective: Monetary policy co-moves with lots of
other macro variables. Only by identifying the structural or exogenous
shocks to policy can we discover its true effects.

2 From a policy perspective, helps to answer the question “if I choose to
raise interest rates by an extra quarter point today, what is likely to
happen over the next year to inflation and output relative to the case
where I keep rates unchanged?” Essentially, this is a question about
impulse responses.
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Stock and Watson’s VAR

Monthly data on inflation (πt), the unemployment rate (ut) and the federal
funds rate (it).

Posits a lower-triangular causal chain of the form

AZt =

 a11 0 0
a21 a22 0
a31 a32 a33

  πt

ut

it

 = BZt−1 + εt

Identifying assumptions

1 Inflation depends only on lagged values of the other variables (sticky
prices?)

2 Unemployment depends on contemporaneous inflation but not the
funds rate.

3 The funds rate depends on both contemporaneous inflation and
unemployment. (Fed using its knowledge about the current state of the
economy when it is setting interest rates).

Can you think of other identifying assumptions?
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IRFs From Recursive VAR, First Identification
Order is Inflation, Unemployment, Interest Rate
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IRFs From Recursive VAR, Second Identification
Order is Interest Rate, Unemployment, Inflation

Inflation Response to Inflation Shock
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